Accurate Solutions of Initial Value Problems for Ordinary Differential Equations with the Fourth Order Runge Kutta Method
نویسندگان
چکیده
منابع مشابه
Block Runge-Kutta Methods for the Numerical Integration of Initial Value Problems in Ordinary Differential Equations
Block Runge-Kutta formulae suitable for the approximate numerical integration of initial value problems for first order systems of ordinary differential equations are derived. Considered in detail are the problems of varying both order and stepsize automatically. This leads to a class of variable order block explicit Runge-Kutta formulae for the integration of nonstiff problems and a class of v...
متن کاملInitial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملValidated solutions of initial value problems for ordinary differential equations
Compared to standard numerical methods for initial value problems (IVPs) for ordinary diierential equations (ODEs), validated methods for IVPs for ODEs have two important advantages: if they return a solution to a problem, then (1) the problem is guaranteed to have a unique solution, and (2) an enclosure of the true solution is produced. The authors survey Taylor series methods for validated so...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملStability of the fourth order Runge-Kutta method for time-dependent partial differential equations
In this paper, we analyze the stability of the fourth order Runge-Kutta method for integrating semi-discrete approximations of time-dependent partial differential equations. Our study focuses on linear problems and covers general semi-bounded spatial discretizations. A counter example is given to show that the classical four-stage fourth order Runge-Kutta method can not preserve the one-step st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics Research
سال: 2015
ISSN: 1916-9809,1916-9795
DOI: 10.5539/jmr.v7n3p41